Session 2.2

Mr. Hernandez: josehdz@cs.stanford.edu

Recap of last week

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

- 1. Understanding the slope
 - (a) Definition: $slope = \frac{rise}{run} = \frac{y_2 y_1}{x_2 x_1}$
 - (b) Positive slope is up/right movement and negative slope is down/right movement
 - (c) Slope can be any real number, but more easily interpreted as a rational number (fraction)
- 2. Slope-intercept form is y = mx + b
 - (a) m is the slope
 - (b) b is the y-intercept, which is where the line crosses the y-axis
 - (c) This is one of the most convenient forms to graph!

Main problems

1. Find the (x, y) point on each line for the specified variable value of x.

(a)
$$y = \frac{4}{5}x - 10$$
 where $x = 3$

(d)
$$y = |x + 4|$$
 where $x = -5$

(b)
$$y = -\frac{5}{2}x + 2$$
 where $x = -3$

(e)
$$y = |x - 5| + 7$$
 where $x = -5$

(c)
$$y = \left| x - \frac{17}{31} \right|$$
 where $x = 0$

(f)
$$y = x^2 + x - 6$$
 where $x = -3$
(g) $y = 2x^2 - x - 10$ where $x = -2$

(h)
$$y = (x-13)(x+2)(x+7)$$
 where $x = -2$

- 2. Find the slope between the two points and then find a third point with integer coordinates. *Extra:* find the equation of the line containing both points.
 - (a) (-1, -2), (1, 2)

(d) (2,1), (6,9)

(b) (5,8), (7,11)

(e) (2,0), (-2,-2)

(c) (0,2),(3,-10)

- (f) (3,-4), (-5,8)
- 3. Graph each of the following lines, identify their slopes, and label the y-intercept on the graph. Extra: label the x-intercept too (where line crosses x-axis).
 - (a) $y = -\frac{3}{2}x + 2$

(c) $y = \frac{7}{6}x - \frac{3}{2}$

(b) $y = \frac{5}{3}x - 2$

(d) y = 2x - 6

- 4. Denote all possible values of x. Use a number line if you find it more convenient
 - (a) $|x| \le 3$
 - (b) $\left|\frac{x}{3}\right| \ge 4$
 - (c) $|3x| \le 6$

- (d) |x-3| < 5
- (e) $|x+3| \ge 2$
- (f) $|x-2|+3 \le 3$
- 5. Plot each of these equations on the same graph. Extra: find the (x,y) point that satisfies both equations.
 - (a) $\begin{cases} 4x + y = 8 \\ 5x + 2y = 13 \end{cases}$
 - (b) $\begin{cases} 2x + 2y = 6\\ -x + 2y = 12 \end{cases}$
 - (c) $\begin{cases} 2x + 4y = 5\\ x + 2y = 8 \end{cases}$

- (d) $\begin{cases} 2x + 2y = 4 \\ -3x + 5y = 6 \end{cases}$
- (e) $\begin{cases} 10x + 7y = 49 \\ 10y x = 70 \end{cases}$ (f) $\begin{cases} 2x + 9y = 0 \\ 3x + 5y = 17 \end{cases}$

More problems

- 1. Graph the following and indicate the peak/trough (corner)
 - (a) y = |x|
 - (b) y = |3x|
 - (c) y = -|2x|
 - (d) y = |x| + 1

- (e) y = |x + 2|
- (f) y = -|x+2|
- (g) y = |x 4| + 1
- (h) y = |x+2| + 2
- 2. In general, what happens if we add 3 to an equation? subtract 3? add c (a constant)?
- 3. In general, what happens if we multiply the equation by -1?
- 4. In general, what happens if we add 3 to x in an equation? subtract 3? add c (a constant)?
- 5. Work on the algebra questions from: http://www.ilmathcontest.com/hs/Questions/Reg/R16AA.pdf