Session 4.3

Mr. Hernandez: josehdz@cs.stanford.edu

Recap of last time

1. Suppose I tag and release 80 buffalo. Later, I fly over the grasslands and 20 out of 100 buffalo we see are tagged. How big would you estimate is the size of the buffalo population?

$$\frac{tagged}{total} = \frac{20}{100} \stackrel{\times 4}{=} \frac{80}{\boxed{400}}$$

2. If Jose can bake 7 cakes in 3 hours, and Nishith can bake 5 cakes in 4 hours, how many **complete** cakes can they, as a team, bake in 15 hours?

$$\frac{cakes}{hour} = \frac{7}{3} + \frac{5}{4} \stackrel{\times 5}{=} \frac{35}{15} + \frac{5}{4} \stackrel{\times 4}{=} \frac{35}{15} + \frac{20}{16} \approx \frac{35}{15} + \frac{19}{15} \longrightarrow 35 + 19 = \boxed{54}$$

- 3. Formulas for Area and Perimeter for each shape:
 - (a) Rectangle: Area = Length * Width and Perimeter = 2 * Length + 2 * Width
 - (b) Right triangle: $Area = \frac{Length*Width}{2}$
 - (c) Circle: $Area = \pi * (radius)^2$ and $Perimeter = 2 * \pi * radius$ and Diameter = 2 * Radius
- 4. **Dimensions** means the length and width, or the radius, depending on the context.
 - (a) Perimeter and length are in terms of *units*, such as centimeters, inches, feet, etc.
 - (b) Area is in terms of $units^2$, such as cm^2 , in^2 , ft^2 , etc.
 - (c) Volume is in terms of $units^3$, such as cm^3 , in^3 , ft^3 , etc.
- 5. Leaving a number in terms of π means to leave it as $9*\pi$ instead of $9*\pi \approx 9*3.14 = 28.26$

Main problems

- 1. Assortment of warm-up problems
 - (a) Suppose that Yankees outfielders tend to catch 35% of the baseballs hit towards them. In a game, if they catch 56 baseballs, then how many were probably hit towards them?
- 2. Find the <u>area</u> of each of the following figures
 - (a) Square with side length 6 cm
 - (b) Rectangle with dimensions $7 \text{ cm} \times 8 \text{ cm}$
 - (c) Right triangle with dimensions 5 cm \times 12 cm
 - (d) Circle with radius 2 cm (leave it in terms of π)
 - (e) Circle with radius 4 cm (leave it in terms of π)
 - (f) Circle with diameter 10 cm (leave it in terms of π)

- (g) Circle with diameter 14 cm (leave it in terms of π)
- 3. Find the dimensions of each figure with the given clues:
 - (a) Square with perimeter 12 cm
 - (b) Square with area 36 cm²
 - (c) Square with area 144 cm²
 - (d) Rectangle with perimeter 18 cm, where Width = 2 * Length
 - (e) Rectangle with area 120 cm^2 , where Width = Length + 2
 - (f) Rectangle with area 28 cm² and perimeter 22 cm
 - (g) Triangle with area 6 cm² where Width = Length + 1
 - (h) Triangle with area 2 cm^2 where Width = Length
 - (i) Circle with perimeter 8π cm
 - (j) Circle with perimeter 12π cm
 - (k) Circle with area 25π cm²
 - (l) Circle with area 64π cm²
- 4. Explain, in your own words, why each equation for area makes sense to you? Think of how you would break it down for your classmates?
- 5. What is the area of a square of a 2×2 rectangle? 4×2 rectangle? 4×4 rectangle? As we increase one side, how does the area change? As we increase both sides, how does the area change?
- 6. What is the are of a circle or radius 2? Radius 4? Radius 6? As we increase the radius, how does the area change?
- 7. At a restaurant a small burger costs \$9 and a large burger costs \$16. Assuming no discounts and equal heights of the circular burger patties, if the small patty has area 12π , what would you expect to be the area of the larger patty?
- 8. Suppose the target logo has three concentric circles, with diameters of length 2, 4, and 6 centimeters, respectively. What fraction of the area is red?

Extra problems

1. Problems from 2010 AMC 8