Session 4.1

Mr. Hernandez: josehdz@cs.stanford.edu

Recap of last time

1. Suppose I tag and release 80 buffalo. Later, I fly over the grasslands and 20 out of 100 buffalo we see are tagged. How big would you estimate is the size of the buffalo population?

$$\frac{tagged}{total} = \frac{20}{100} \stackrel{\times 4}{=} \frac{80}{\boxed{400}}$$

2. If Jose can bake 7 cakes in 3 hours, and Nishith can bake 5 cakes in 4 hours, how many **complete** cakes can they, as a team, bake in 15 hours?

$$\frac{cakes}{hour} = \frac{7}{3} + \frac{5}{4} \stackrel{\times 5}{=} \frac{35}{15} + \frac{5}{4} \stackrel{\times 4}{=} \frac{35}{15} + \frac{20}{16} \approx \frac{35}{15} + \frac{19}{15} \longrightarrow 35 + 19 = \boxed{54}$$

Main problems

- 1. Assortment of warm-up problems
 - (a) Suppose 78% of air is Nitrogen. If we are in a room with 1500 gallons of air, how many gallons of Nitrogen are there?
 - (b) Suppose 15% of American adults suffer from high cholesterol. In a room where 300 adults suffer from high cholesterol, how big would you expect the room to be?
 - (c) If Mr. Hernandez can type 200 words per 2 minutes and Mr. Parker can type 600 words per 5 minutes, then about how many words can they type in 12 minutes as a team?
- 2. Find the area of each of the following figure
 - (a) Square with side length 5 cm
 - (b) Rectangle with dimensions $4 \text{ cm} \times 7 \text{ cm}$
 - (c) Right triangle with dimensions $3 \text{ cm} \times 4 \text{ cm}$
 - (d) Circle with radius 2 cm (leave it in terms of π)
 - (e) Circle with radius 4 cm (leave it in terms of π)
 - (f) Circle with diameter 6 cm (leave it in terms of π)
 - (g) Circle with diameter 2 cm (leave it in terms of π)
- 3. Find the dimensions of each figure with the given clues:
 - (a) Square with perimeter 28 cm
 - (b) Square with area 81 cm^2
 - (c) Rectangle with perimeter 24 cm, where Width = 2 * Length
 - (d) Rectangle with area 35 cm, where Width = Length + 2
 - (e) Triangle with area $\frac{12}{2}$ cm² where Width = Length + 1
 - (f) Circle with perimeter 12π cm

- (g) Circle with area 16π cm²
- (h) Circle with area 49π cm²
- 4. Explain, in your own words, why each equation for area makes sense to you? Think of how you would break it down for your classmates?
- 5. What is the area of a square of a 2×2 rectangle? 4×2 rectangle? 4×4 rectangle? As we increase one side, how does the area change? As we increase both sides, how does the area change?
- 6. What is the are of a circle or radius 2? Radius 4? Radius 6? As we increase the radius, how does the area change?
- 7. At a restaurant a small burger costs \$9 and a large burger costs \$16. Assuming no discounts and equal heights of the circular burger patties, if the small patty has area 12π , what would you expect to be the area of the larger patty?
- 8. Suppose the target logo has three concentric circles, with diameters of length 2, 4, and 6 centimeters, respectively. What fraction of the area is red?

Extra problems

1. Problems from 2010 AMC 8